Markscheme

May 2018

Physics

Higher level

Paper 2

18 pages

This markscheme is the property of the International
Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Question			Answers	Notes	Total
1.	a	i	towards the centre «of the circle» / horizontally to the right \checkmark	Do not accept towards the centre of the bowl	1
1.	a	ii	downward vertical arrow of any length \checkmark arrow of correct length	Judge the length of the vertical arrow by eye. The construction lines are not required. A label is not required eg:	2
1.	a	iii	ALTERNATIVE 1 $\begin{aligned} & F=N \cos \theta \checkmark \\ & m g=N \sin \theta \end{aligned}$ dividing/substituting to get result \checkmark ALTERNATIVE 2 right angle triangle drawn with F, N and $W / m g$ labelled \checkmark angle correctly labelled and arrows on forces in correct directions \checkmark correct use of trigonometry leading to the required relationship \checkmark	eg: $\begin{aligned} & \tan \theta=\frac{O}{A}=\frac{m g}{F} \\ & F=\frac{m g}{\tan \theta} \end{aligned}$	3

(continued...)
(Question 1 continued)

Question		Answers	Notes	Total
1.	b	$\begin{aligned} & \frac{m g}{\tan \theta}=m \frac{v^{2}}{r} \\ & r=R \cos \theta \\ & v=\sqrt{\frac{g R \cos ^{2} \theta}{\sin \theta}} / \sqrt{\frac{g R \cos \theta}{\tan \theta}} / \sqrt{\frac{9.81 \times 8.0 \cos 22}{\tan 22}} \\ & v=13.4 / 13<\mathrm{ms}^{-1} » \end{aligned}$	Award [4] for a bald correct answer Award [3] for an answer of 13.9/14 «ms ${ }^{-1} »$. MP2 omitted	4
1.	C	there is no force to balance the weight $/ \mathrm{N}$ is horizontal so no / it is not possible	Must see correct justification to award MP2	2

(continued...)
(Question 1 continued)

Question			Answers	Notes	Total
1.	d	i	the «restoring» force/acceleration is proportional to displacement	Direction is not required	1
1.	d	ii	$\omega=« \sqrt{\frac{g}{R}} »=\sqrt{\frac{9.81}{8.0}} «=1.107 \mathrm{~s}^{-1} » \downarrow$ $T=« \frac{2 \pi}{\omega}=\frac{2 \pi}{1.107}=» 5.7 \text { «s» }$	Allow use of $g=9.8$ or 10 Award [0] for a substitution into $T=2 \pi \sqrt{\frac{l}{g}}$	2
1.	d	iii	sine graph correct amplitude « $0.13 \mathrm{~m} \mathrm{~s}^{-1}$ » correct period and only 1 period shown	Accept \pm sine for shape of the graph. Accept 5.7 s or 6.0 s for the correct period. Amplitude should be correct to $\pm \frac{1}{2}$ square for MP2	3

(continued...)
(Question 1 continued)

Question		Answers	Notes	Total
1.	e	speed before collision $v=« \sqrt{2 g R}=» 12.5<\mathrm{ms}^{-1} »$ «from conservation of momentum» common speed after collision is $\frac{1}{2}$ initial $\begin{aligned} & \text { speed } « v_{c}=\frac{12.5}{2}=6.25 \mathrm{~m} \mathrm{~s}^{-1} » \\ & h=« \frac{v_{c}^{2}}{2 g}=\frac{6.25^{2}}{2 \times 9.81} » 2.0<\mathrm{m} » \end{aligned}$	Allow 12.5 from incorrect use of kinematics equations Award [3] for a bald correct answer Award [0] for $\mathrm{mg}(8)=2 \mathrm{mgh}$ leading to $h=4 \mathrm{~m}$ if done in one step. Allow ECF from MP1 Allow ECF from MP2	3

Question			Answers	Notes	Total
2.	a	i	a gas in which there are no intermolecular forces OR a gas that obeys the ideal gas law/all gas laws at all pressures, volumes and temperatures OR molecules have zero PE/only KE \checkmark	Accept atoms/particles.	1
2.	a	ii	$N=« \frac{p V}{k T}=\frac{5.3 \times 10^{5} \times 2.1 \times 10^{-4}}{1.38 \times 10^{-23} \times 310} \geqslant 2.6 \times 10^{22}$		1
2.	a	iii	«For one atom $U=\frac{3}{2} k T$ » $\frac{3}{2}$ ǎ 1.38 ǎ 10^{-23} ǎ $310 / 6.4$ ǎ $10^{-21 « \mathrm{~J} \text { » } \checkmark ~}$ $U=« 2.6 \times 10^{22} \times \frac{3}{2} \times 1.38 \times 10^{-23} \times 310 » 170 « \mathrm{~J} » \quad$	Allow ECF from (a)(ii) Award [2] for a bald correct answer Allow use of $U=\frac{3}{2} p V$	2
2.	b	i	$p_{2}=« 5.3 \times 10^{5} \times \frac{2.1 \times 10^{-4}}{6.8 \times 10^{-4}}$ 》 1.6×10^{5} «Pa»		1
2.	b	ii	«volume has increased and» average velocity/KE remains unchanged «so» molecules collide with the walls less frequently/longer time between collisions with the walls «hence» rate of change of momentum at wall has decreased \checkmark «and so pressure has decreased»	The idea of average must be included Decrease in number of collisions is not sufficient for MP2. Time must be included. Accept atoms/particles.	2 max

Question			Answers	Notes	Total
3.	a	i	the incident wave «from the speaker» and the reflected wave «from the closed end» superpose/combine/interfere	Allow superimpose/add up Do not allow meet/interact	1
3.	a	ii	Horizontal arrow from X to the right \checkmark	MP2 is dependent on MP1 Ignore length of arrow	1
3.	a	iii	P at a node \checkmark		1
3.	a	iv	wavelength is $\lambda=<\frac{4 \times 0.30}{3}=» 0.40$ «m» \checkmark $f=« \frac{340}{0.40}=» 850<\mathrm{Hz} » \quad \downarrow$	Award [2] for a bald correct answer Allow ECF from MP1	2

(continued...)
(Question 3 continued)

Question			Answers	Notes	Total
3.	b	i	$\frac{\sin \theta_{C}}{340}=\frac{1}{1500} \checkmark$ $\theta_{C}=13 «^{\circ} » \checkmark$	Award [2] for a bald correct answer Award [2] for a bald answer of 13.1 Answer must be to $2 / 3$ significant figures to award MP2 Allow 0.23 radians	2
3.	b	ii	correct orientation \checkmark greater separation \checkmark	Do not penalize the lengths of A and B in the water Do not penalize a wavefront for C if it is consistent with A and B MP1 must be awarded for MP2 to be awarded eg:	2

Question			Answers	Notes	Total
4.	a		the work done per unit charge in moving charge from one terminal of a cell to the other / all the way round the circuit	Award [1] for "energy per unit charge provided by the cell"/"power per unit current" Award [1] for "potential difference across the terminals of the cell when no current is flowing" Do not accept "potential difference across terminals of cell"	2
4.	b	i	the resistance is proportional to length / see 0.35 AND 1 «.00» \downarrow so it equals $0.35 \times 80 \checkmark$ $\text { "= } 28 \Omega \text { » }$		2
4.	b	ii	current leaving 12 V cell is $\frac{12}{80}=0.15$ « A " OR $\begin{aligned} & E=\frac{12}{80} \times 28 \checkmark \\ & E=« 0.15 \times 28=» 4.2 « \mathrm{~V} » \end{aligned}$	Award [2] for a bald correct answer Allow a 1sf answer of 4 if it comes from a calculation. Do not allow a bald answer of 4 " V " Allow ECF from incorrect current	2
4.	C		since the current in the cell is still zero there is no potential drop across the internal resistance \checkmark and so the length would be the same \checkmark	OWTTE	2

Question		Answers	Notes	Total
5.	a	horizontal straight line through $I=2 \checkmark$	 Accept a curve that falls from I=2 as distance increases from centre but not if it falls to zero.	1
5.	b	«standard two slit pattern» general shape with a maximum at $x=0 \checkmark$ maxima at $4 I_{0} \checkmark$ maxima separated by « $\frac{D \lambda}{s}=» 2.0 \mathrm{~cm} \checkmark$	Accept single slit modulated pattern provided central maximum is at 4. ie height of peaks decrease as they go away from central maximum. Peaks must be of the same width	3
5.	C	fringe width/separation decreases OR more maxima seen		1

Question			Answers	Notes	Total
6.	a	i	the «gravitational» force per unit mass exerted on a point/small/test mass		1
6.	a	ii	at height h potential is $V=-\frac{G M}{(R+h)} \checkmark$ field is $g=\frac{G M}{(R+h)^{2}} \checkmark$ «dividing gives answer»	Do not allow an answer that starts with $g=-\frac{\Delta V}{\Delta r}$ and then cancels the deltas and substitutes $R+h$	2
6.	a	iii	correct shape and sign \checkmark non-zero negative vertical intercept \checkmark		2
6.	b		$V=«-2.2 \times\left(3.1 \times 10^{6}+2.4 \times 10^{7}\right)=»$ <-» $6.0 \times 10^{7} \mathrm{Jkg}^{-1} \checkmark$	Unit is essential Allow eg MJ kg${ }^{-1}$ if power of 10 is correct Allow other correct SI units eg $\mathrm{m}^{2} \mathrm{~s}^{-2}, \mathrm{Nm} \mathrm{kg}^{-1}$	1

(continued...)
(Question 6 continued)

Question		Answers	Notes	Total
6.	C	$\begin{aligned} & \text { total energy at } \mathrm{P}=0 / \text { KE gained }=\text { GPE lost } \checkmark \\ & \text { « } \frac{1}{2} m v^{2}+m V=0 \Rightarrow » v=\sqrt{-2 V} \checkmark \\ & v=« \sqrt{2 \times 6.0 \times 10^{7}}=» 1.1 \times 10^{4}<\mathrm{ms}^{-1} » \checkmark \end{aligned}$	Award [3] for a bald correct answer Ignore negative sign errors in the workings Allow ECF from 6(b)	3
6.	d	ALTERNATIVE 1 force on asteroid is « $6.2 \times 10^{12} \times 2.2=» 1.4 \times 10^{13}$ «N» \checkmark «by Newton's third law» this is also the force on the planet \checkmark ALTERNATIVE 2 mass of planet $=2.4 \times 10^{25}$ «kg» «from $V=-\frac{G M}{(R+h)} » \checkmark$ force on planet « $=\frac{G M m}{(R+h)^{2}} »=1.4 \times 10^{13}$ «N» \checkmark	MP2 must be explicit	2

Question			Answers	Notes	Total
7.	a	i	Average height $=127 « m » \checkmark$ Specific energy «= $\frac{m g \bar{h}}{m}=g \bar{h}=9.81 \times 127 »=1.2 \times 10^{3} \mathrm{Jkg}^{-1} \checkmark$	Unit is essential Allow $g=10$ gives $1.3 \times 10^{3} \mathrm{Jkg}^{-1}$ Allow ECF from $110 \mathrm{~m}\left(1.1 \times 10^{3} \mathrm{Jkg}^{-1}\right)$ or $144 \mathrm{~m}\left(1.4 \times 10^{3} \mathrm{Jkg}^{-1}\right)$	2
7.	a	ii	mass per second leaving dam is $\frac{1.2 \times 10^{5}}{60} \times 10^{3}=« 2.0 \times 10^{6} \mathrm{~kg} \mathrm{~s}^{-1} » \checkmark$ rate of decrease of GPE is $=2.0 \times 10^{6} \times 9.81 \times 127 \checkmark$ $=2.49 \times 10^{9} \text { «W»/2.49«GW» }$	Do not award ECF for the use of 110 m or 144 m Allow 2.4GW if rounded value used from (a)(i) or 2.6GW if $g=10$ is used	3
7.	a	iii	efficiency is < $\frac{1.8}{2.5}=» 0.72 / 72 \% \checkmark$		1
7.	b		water is pumped back up at times when the demand for/price of electricity is low \checkmark		1

Question			Answers	Notes	Total
8.	a		$\begin{aligned} & C=« \varepsilon \frac{A}{d}=» 8.8 \times 10^{-12} \times \frac{1.2 \times 10^{8}}{1600} \\ & \left.« C=6.60 \times 10^{-7} \mathrm{~F}\right\rangle \end{aligned}$		1
8.	b	i	$\begin{aligned} & V=« \frac{Q}{C}=» \frac{25}{6.6 \times 10^{-7}} \\ & V=3.8 \times 10^{7} « \mathrm{~V} » \end{aligned}$	Award [2] for a bald correct answer	2
8.	b	ii	ALTERNATIVE 1 $\begin{aligned} & E=« \frac{1}{2} Q V=» \frac{1}{2} \times 25 \times 3.8 \times 10^{7} \\ & E=4.7 \times 10^{8} « \mathrm{~J} » \end{aligned}$ ALTERNATIVE 2 $\begin{aligned} & E=« \frac{1}{2} C V^{2}=» \frac{1}{2} \times 6.60 \times 10^{-7} \times\left(3.8 \times 10^{7}\right)^{2} \\ & E=4.7 \times 10^{8} \text { «J»/ } 4.8 \times 10^{8} \text { «J» if rounded value of } V \text { used } \end{aligned}$	Award [2] for a bald correct answer Allow ECF from (b)(i) Award [2] for a bald correct answer Allow ECF from (b)(i)	2
8.	c	i	$\begin{aligned} & Q=« Q_{0} e^{-\frac{t}{\tau}}=» 25 \times e^{-\frac{18}{32}} \checkmark \\ & Q=14.2 \text { «C» } \\ & \text { charge delivered }=Q=25-14.2=10.8 « \mathrm{C} » \\ & « \approx-11 \mathrm{C} » \end{aligned}$	Final answer must be given to at least 3 significant figures	3
8.	c	ii	$I «=\frac{\Delta Q}{\Delta t}=\frac{11}{18 \times 10^{-3}}>\approx 610$ «A" \checkmark	Accept an answer in the range 597-611 «A"	1

(continued...)
(Question 8 continued)

Question		Answers	Notes	Total
8.	d	the base of the thundercloud must be parallel to the Earth surface OR the base of the thundercloud must be flat OR the base of the cloud must be very long «compared with the distance from the surface» \checkmark	$\mathbf{1}$	

9.	a		«most of» the mass of the atom is confined within a very small volume/nucleus \checkmark «all» the positive charge is confined within a very small volume/nucleus \checkmark electrons orbit the nucleus «in circular orbits» \checkmark		
9.	b	the electrons accelerate and so radiate energy \checkmark they would therefore spiral into the nucleus/atoms would be unstable \checkmark electrons have discrete/only certain energy levels \checkmark the only orbits where electrons do not radiate are those that satisfy the Bohr condition «mvr $=n \frac{h}{2 \pi} »$	3 max		

(continued...)
(Question 9 continued)

Question		Answers 9.			

(continued...)
(Question 9 continued)

Question			Answers	Notes	Total
9.	d	iii	Photon energy $\begin{aligned} & \mathrm{E}=0.48 \times 10^{6} \times 1.6 \times 10^{-19}=« 7.68 \times 10^{-14} \mathrm{~J} » \\ & \lambda=« \frac{h c}{E}=\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{7.68 \times 10^{-14}}=» 2.6 \times 10^{-12} « \mathrm{~m} » \end{aligned}$	Award [2] for a bald correct answer Allow ECF from incorrect energy	2
9.	e	i	line with arrow as shown labelled anti-neutrino $\bar{v} \checkmark$	Correct direction of the "arrow" is essential The line drawn must be "upwards" from the vertex in the time direction i.e. above the horizontal eg:	1
9.	e	ii	$\mathrm{V}=\mathrm{W}^{-} \checkmark$		1

